Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Rheumatology (Oxford) ; 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20243779

ABSTRACT

OBJECTIVES: B cell depleting monoclonal antibodies are associated with increased COVID-19 severity and impaired immune response to vaccination. We aimed to assess the humoral and cell mediated (CMI) immune response after SARS-CoV-2 vaccination in rituximab (RTX)-treated rheumatic patients. METHODS: Serum and whole blood samples were collected from rituximab (RTX)-treated rheumatic patients 3-6 months after last vaccination against SARS-CoV-2. Serum was tested by ELISA for quantitative detection of anti-spike SARS-CoV-2 IgG. Cell-mediated variant-specific SARS-CoV-2 immunity (CMI) was assessed by interferon-γ release assay Covi-FERON FIA. Patients were interviewed for breakthrough COVID-19 infection (BTI) 3 months post sampling. RESULTS: Sixty patients were studied after a median (IQR) of 179 (117-221.5) days from last vaccine to sampling. Forty (66.7%) patients had positive Covi-FERON and 23 (38.3%) had detectable anti-spike IgG. Covi-FERON positive patients had lower median RTX cumulative dose [6 (4-10.75) vs 11 (6.75-14.75) grams, (p= 0.019). Patients with positive anti-spike IgG had received fewer RTX cycles [2 (2-4) vs 6 (4-8), p= 0.002) and cumulative dose [4 (3-7) vs 10 (6.25-13) grams, p= 0.002] and had shorter time from last vaccination to sampling [140 (76-199) vs 192 (128-230) days, p= 0.047). Thirty-seven percent were positive only for Covi-FERON and 7% only for anti-spike IgG. Twenty (33.3%) BTI occurred post sampling, exclusively during Omicron variant predominance. The proportion of patients with CMI response against Delta variant was lower in patients who experienced BTI (25% vs 55%, p= 0.03). CONCLUSIONS: Four out of ten RTX-treated vaccinated patients show lasting cell-mediated immune response despite undetectable anti-spike antibodies. Cumulative RTX dose affects both humoral and cell-mediated responses to SARS-CoV-2 vaccines. Cell-mediated immune responses call for attention as a vaccine efficacy marker against SARS-CoV-2.

2.
Mult Scler ; 29(4-5): 585-594, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299594

ABSTRACT

BACKGROUND: Data are sparse regarding the safety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with multiple sclerosis (MS). OBJECTIVE: To estimate (1) the pooled proportion of MS patients experiencing relapse among vaccine recipients; (2) the rate of transient neurological worsening, adverse events, and serious adverse events; (3) the previous outcomes of interest for different SARS-CoV-2 vaccine types. METHODS: Systematic review and meta-analysis of pharmacovigilance registries and observational studies. RESULTS: Nineteen observational studies comprising 14,755 MS patients who received 23,088 doses of COVID-19 vaccines were included. Mean age was 43.3 years (95% confidence interval (CI): 40-46.6); relapsing-remitting, secondary-progressive, primary-progressive MS and clinically isolated syndrome were diagnosed in 82.6% (95% CI: 73.9-89.8), 12.6% (95% CI: 6.3-20.8), 6.7% (95% CI: 4.2-9.9), and 2.9% (95% CI: 1-5.9) of cases, respectively. The pooled proportion of MS patients experiencing relapse at a mean time interval of 20 days (95% CI: 12-28.2) from vaccination was 1.9% (95% CI: 1.3%-2.6%; I2 = 78%), with the relapse risk being independent of the type of administered SARS-CoV-2-vaccine (p for subgroup differences = 0.7 for messenger RNA (mRNA), inactivated virus, and adenovector-based vaccines). After vaccination, transient neurological worsening was observed in 4.8% (95% CI: 2.3%-8.1%) of patients. Adverse events and serious adverse events were reported in 52.8% (95% CI: 46.7%-58.8%) and 0.1% (95% CI: 0%-0.2%) of vaccinations, respectively. CONCLUSION: COVID-19 vaccination does not appear to increase the risk of relapse and serious adverse events in MS. Weighted against the risks of SARS-CoV-2-related complications and MS exacerbations, these safety data provide compelling pro-vaccination arguments for MS patients.


Subject(s)
COVID-19 , Multiple Sclerosis , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Multiple Sclerosis/complications , SARS-CoV-2 , Vaccination
4.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2229935

ABSTRACT

The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.


Subject(s)
Autoantibodies , COVID-19 , Humans , Autoantigens , Critical Illness , Cytokines , SARS-CoV-2
5.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2196397

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
6.
Viruses ; 15(2)2023 01 22.
Article in English | MEDLINE | ID: covidwho-2200907

ABSTRACT

Background, Aims, Methods, Results, Conclusions: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. The molecular biology of this virus has been extensively studied and computational methods applied are an example paradigm for novel antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-like protease (3CLpro) can prevent the viral replication. Additionally, non-RBD and non-interfacial mutations may assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces that trigger infections. Variants' distribution data for SARS-CoV-2 across EU/EEA countries were mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence or genotyping data that are deposited in the Global Science Initiative for providing genomic data (GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches. Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2' (814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R, P681R) and may be responsible for the increased transmissibility and morbidity are also present in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Arginine , Furin , Molecular Epidemiology , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme 2 , COVID-19/epidemiology , Angiotensin-Converting Enzyme Inhibitors , Mutation
7.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2116215

ABSTRACT

The effectiveness of coronavirus disease 2019 (COVID-19) vaccination strategies is affected by several factors, including the genetic background of the host. In our study, we evaluated the contribution of the functional polymorphism rs1883832 affecting the Kozak sequence of the TNFSF5 gene (c.-1C>T), encoding CD40, to humoral immune responses after vaccination with the spike protein of SARS-CoV-2. The rs1883832 polymorphism was analyzed by PCR-RFLP in 476 individuals (male/female: 216/260, median age: 55.0 years, range: 20-105) of whom 342 received the BNT162b2 mRNA vaccine and 134 received the adenovirus-based vector vaccines (67 on ChAdOx1-nCoV-19 vaccine, 67 on Ad.26.COV2.S vaccine). The IgG and IgA responses were evaluated with chemiluminescent microparticle and ELISA assays on days 21, 42, and 90 after the first dose. The T allele of the rs1883832 polymorphism (allele frequency: 32.8%) was significantly associated with lower IgA levels and represented, as revealed by multivariable analysis, an independent risk factor for reduced anti-spike protein IgA levels on days 42 and 90 following BNT162b2 mRNA vaccination. Similar to serum anti-spike IgA levels, a trend of lower anti-spike IgA concentrations in saliva was found in individuals with the T allele of rs1883832. Finally, the intensity of IgA and IgG responses on day 42 significantly affected the prevalence of COVID-19 after vaccination. The rs1883832 polymorphism may be used as a molecular predictor of the intensity of anti-spike IgA responses after BNT162b2 mRNA vaccination.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Female , Male , Middle Aged , COVID-19/prevention & control , SARS-CoV-2/genetics , CD40 Antigens/genetics , Vaccination , Immunoglobulin A , Immunoglobulin G , RNA, Messenger
8.
Interfaces ; 52(5):398, 2022.
Article in English | ProQuest Central | ID: covidwho-2065085

ABSTRACT

In the summer of 2020, in collaboration with the Greek government, we designed and deployed Eva-the first national-scale, reinforcement learning system for targeted COVID-19 testing. In this paper, we detail the rationale for three major design/algorithmic elements: Eva's testing supply chain, estimating COVID-19 prevalence, and test allocation. Specifically, we describe the design of Eva's supply chain to collect and process thousands of biological samples per day with special emphasis on capacity procurement. Then, we propose a novel, empirical Bayes estimation strategy to estimate COVID-19 prevalence among various passenger types with limited data and showcase how these estimates were instrumental in making a variety of downstream decisions. Finally, we propose a novel, multiarmed bandit algorithm that dynamically allocates tests to arriving passengers in a nonstationary environment with delayed feedback and batched decisions. All our design and algorithmic choices emphasize the need for transparent reasoning to enable human-in-the-loop analytics. Such transparency was crucial to building trust and acceptance among policymakers and public health experts in a period of global crisis.

9.
Sci Total Environ ; 856(Pt 1): 159062, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2049908

ABSTRACT

Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.1.617.2) by the omicron variant (B.1.1.529) in Attica, Greece within approximately one month is highlighted. The key difference between the two methodologies is discovery power. RT-PCR can only detect known sequences cost-effectively, while NGS is a hypothesis-free approach that does not require prior knowledge to detect novel genes. Overall, the potential of wastewater genomic surveillance for the early discovery and monitoring of variants important for disease management at the community level is underlined. This is the first study, reporting the SARS-CoV-2 infection dynamic for an extended time period and the first attempt to monitor two of the most severe variants with two different methodologies in Greece.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Greece
10.
Life (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2043845

ABSTRACT

Cluster of differentiation (CD) 24, a long-known protein with multifaceted functions, has gained attention as a possible treatment for Coronavirus Disease 19 (COVID-19) due to its known anti-inflammatory action. Extracellular vesicles (EVs), such as exosomes and microvesicles, may serve as candidate drug delivery platforms for novel therapeutic approaches in COVID-19 and various other diseases due to their unique characteristics. In the current review, we describe the physiology of CD24 and EVs and try to elucidate their role, both independently and as a combination, in COVID-19 therapeutics. CD24 may act as an important immune regulator in diseases with complex physiologies characterized by excessive inflammation. Very recent data outline a possible therapeutic role not only in COVID-19 but also in other similar disease states, e.g., acute respiratory distress syndrome (ARDS) and sepsis where immune dysregulation plays a key pathophysiologic role. On the other hand, CD24, as well as other therapeutic molecules, can be administered with the use of exosomes, exploiting their unique characteristics to create a novel drug delivery platform as outlined in recent clinical efforts. The implications for human therapeutics in general are huge with regard to pharmacodynamics, pharmacokinetics, safety, and efficacy that will be further elucidated in future randomized controlled trials (RCTs).

11.
Life (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2006119

ABSTRACT

Early identification of COVID-19 cases has been vital for reducing transmission and enabling treatment. In Greece, in autumn 2021 when Delta was the predominant circulating variant, unvaccinated citizens had to be tested before attending activities, and self-testing was required twice a week for students (5-17 years). Here, we describe the time of diagnosis by age group and possible exposure to assess testing strategies (September to November 2021). Information on the presence of symptoms at the time of diagnosis was available for 69,298 cases; 24,855 (36%) were asymptomatic or tested the same day as onset (early diagnosis), 21,310 (31%) reported testing one day after, and 23,133 (33%) did so two or more days after the onset of symptoms. The median lag was 2 days (1-14). Early diagnosis significantly differed among age groups (p-value < 0.001) and was higher among children. For every one-year increase of age, the odds of an early diagnosis were reduced by 1%. Cases exposed during training activities or in settings such as accommodation centers and hospitals were more frequently diagnosed early. The percentage of persons having a positive self-test before a rapid test/PCR diagnosis ranged from 7% in the age group of 60 years and above to 86% in the age group of 5-17 years. The provision of self-tests in schools and increased testing in closed settings led to an earlier diagnosis and probably to a decreased transmission of the virus in the period during which Delta was the predominant variant in Greece. However, more effort is needed for early diagnosis of adults in the community, especially after the onset of symptoms.

12.
Clin Microbiol Rev ; 34(4): e0001821, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1328572

ABSTRACT

Cardiopulmonary resuscitation (CPR) is an emergency lifesaving endeavor, performed in either the hospital or outpatient settings, that significantly improves outcomes and survival rates when performed in a timely fashion. As with any other medical procedure, CPR can bear potential risks not only for the patient but also for the rescuer. Among those risks, transmission of an infectious agent has been one of the most compelling triggers of reluctance to perform CPR among providers. The concern for transmission of an infection from the resuscitated subject may impede prompt initiation and implementation of CPR, compromising survival rates and neurological outcomes of the patients. Infections during CPR can be potentially acquired through airborne, droplet, contact, or hematogenous transmission. However, only a few cases of infection transmission have been actually reported globally. In this review, we present the available epidemiological findings on transmission of different pathogens during CPR and data on reluctance of health care workers to perform CPR. We also outline the levels of personal protective equipment and other protective measures according to potential infectious hazards that providers are potentially exposed to during CPR and summarize current guidelines on protection of CPR providers from international societies and stakeholders.


Subject(s)
Cardiopulmonary Resuscitation , Humans
13.
Math Biosci Eng ; 19(10): 9853-9876, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1964172

ABSTRACT

Epidemic spread models are useful tools to study the spread and the effectiveness of the interventions at a population level, to an epidemic. The workhorse of spatially homogeneous class models is the SIR-type ones comprising ordinary differential equations for the unknown state variables. The transition between different states is expressed through rate functions. Inspired by -but not restricted to- features of the COVID-19 pandemic, a new framework for modeling a disease spread is proposed. The main concept refers to the assignment of properties to each individual person as regards his response to the disease. A multidimensional distribution of these properties represents the whole population. The temporal evolution of this distribution is the only dependent variable of the problem. All other variables can be extracted by post-processing of this distribution. It is noteworthy that the new concept allows an improved consideration of vaccination modeling because it recognizes vaccination as a modifier of individuals response to the disease and not as a means for individuals to totally defeat the disease. At the heart of the new approach is an infection age model engaging a sharp cut-off. This model is analyzed in detail, and it is shown to admit self-similar solutions. A hierarchy of models based on the new approach, from a generalized one to a specific one with three dominant properties, is derived. The latter is implemented as an example and indicative results are presented and discussed. It appears that the new framework is general and versatile enough to simulate disease spread processes and to predict the evolution of several variables of the population during this spread.


Subject(s)
COVID-19 , Humans , Pandemics
14.
EMBO Mol Med ; 14(9): e15997, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1918175

ABSTRACT

A small but significant proportion of COVID-19 patients develop life-threatening cytokine storm. We have developed a new anti-inflammatory drug, EXO-CD24, a combination of an immune checkpoint (CD24) and a delivery platform (exosomes). CD24 inhibits the NF-kB pathway and the production of cytokines/chemokines. EXO-CD24 discriminates damage-from pathogen-associated molecular patterns (DAMPs and PAMPs) therefore does not interfere with viral clearance. EXO-CD24 was produced and purified from CD24-expressing 293-TREx™ cells. Exosomes displaying murine CD24 (mCD24) were also created. EXO-CD24/mCD24 were characterized and examined, for safety and efficacy, in vitro and in vivo. In a phase Ib/IIa study, 35 patients with moderate-high severity COVID-19 were recruited and given escalating doses, 108 -1010 , of EXO-CD24 by inhalation, QD, for 5 days. No adverse events related to the drug were observed up to 443-575 days. EXO-CD24 effectively reduced inflammatory markers and cytokine/chemokine, although randomized studies are required. EXO-CD24 may be a treatment strategy to suppress the hyper-inflammatory response in the lungs of COVID-19 patients and further serve as a therapeutic platform for other pulmonary and systemic diseases characterized by cytokine storm.


Subject(s)
COVID-19 Drug Treatment , Exosomes , Animals , CD24 Antigen/metabolism , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Exosomes/metabolism , Humans , Lung , Mice
17.
J Med Virol ; 94(10): 5044-5050, 2022 10.
Article in English | MEDLINE | ID: covidwho-1885417

ABSTRACT

As national coronavirus disease 2019 (COVID-19) mass vaccination campaigns are rolled out, monitoring real-world Vaccine Effectiveness (VE) and its durability is essential. We aimed to estimate COVID-19 VE against severe disease and death in the Greek population, for all vaccines currently in use. Nationwide active surveillance and vaccination registry data during January-December 2021 were used to estimate VE via quasi-Poisson regression, adjusted for age and calendar time. Interaction terms were included to assess VE by age group, against the "delta" severe acute respiratory syndrome coronavirus 2 variant and waning of VE over time. Two doses of BNT162b2, mRNA-1273, or ChAdOx1 nCov-19 vaccines offered very high (>90%) VE against both intubation and death across all age groups, similar against both "delta" and previous variants, with one-dose Ad26.COV2.S slightly lower. VE waned over time but remained >80% at 6 months, and three doses increased VE again to near 100%. Vaccination prevented an estimated 19 691 COVID-19 deaths (95% confidence interval: 18 890-20 788) over the study period. All approved vaccines offer strong and also durable protection against COVID-19 severe disease and death. Every effort should be made to vaccinate the population with at least two doses, to reduce the mortality and morbidity impact of the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Ad26COVS1 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunization Programs , Vaccination
18.
Ther Adv Neurol Disord ; 15: 17562864221099472, 2022.
Article in English | MEDLINE | ID: covidwho-1868990

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is associated with increased thrombosis prevalence. However, there are insufficient data supporting the appropriate anticoagulation dose in COVID-19. Objective: We aim to systematically assess the currently available data regarding the effects of different dosing regimens of low molecular weight heparin and/or fondaparinux (LMWH/F) on mortality risk as well as the risk of arterial/venous thrombotic events and hemorrhagic complications in confirmed COVID-19 cases. Design: We conducted a living systematic review and meta-analysis on the effects of different LMWH/F doses on mortality, thrombotic and hemorrhagic events in COVID-19 patients. Data Sources and Methods: MEDLINE, Scopus, Embase, Cochrane Library, Cochrane COVID-19 study register, European Union Drug Regulating Authorities Clinical Trials Database, and ClinicalTrials.gov were searched to detect observational cohort studies and randomized-controlled clinical trials (RCTs) comparing difference doses of LMWH/F among confirmed COVID-19 cases. Results: Thirty-one eligible studies (6 RCTs and 25 cohort studies) with 11,430 hospitalized patients were included. No association was found between LMWH/F and mortality during the following comparisons: (1) no LMWH/F versus any LMWH/F; (2) prophylactic versus higher than prophylactic LMWH/F; (3) prophylactic versus therapeutic LMWH/F; (4) intermediate versus therapeutic LMWH/F; and (5) lower than therapeutic versus therapeutic LMWH/F. Mortality was higher in patients receiving prophylactic versus intermediate LMWH/F (OR = 2.01; 95% CI: 1.19-3.39). However, this effect was mostly driven by observational data. No associations were detected between the intensity of LMWH/F and the risk of thrombotic and hemorrhagic events, except the lower risk for hemorrhage in patients on prophylactic compared to higher LMWH/F doses. Conclusion: The risk for all-cause mortality was higher in patients receiving prophylactic LMWH/F compared to those on an intermediate dose of LMWH/F, based on observational data. These results should be interpreted in light of the moderate quality and heterogeneity of the included studies. Registration: The study protocol has been registered in the International Prospective Register of Ongoing Systematic Reviews PROSPERO (Registration number: CRD42021229771).

19.
Vaccines (Basel) ; 10(3)2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1818223

ABSTRACT

Vaccine hesitancy is a major barrier to achieving large-scale COVID-19 vaccination. We report trends in vaccination intention and associated determinants from surveys in the adult general population in Greece. Four cross-sectional phone surveys were conducted in November 2020 and February, April and May 2021 on nationally representative samples of adults in Greece. Multinomial logistic regression was used on the combined data of the surveys to evaluate independent predictors of vaccination unwillingness/uncertainty. Vaccination intention increased from 67.6% in November 2020 to 84.8% in May 2021. Individuals aged 65 years or older were more willing to be vaccinated (May 2021: 92.9% vs. 79.5% in 18-39 years, p < 0.001) but between age-groups differences decreased over time. Vaccination intention increased substantially in both men and women, though earlier among men, and was higher in individuals with prograduate education (May 2021: 91.3% vs. 84.0% up to junior high). From multivariable analysis, unwillingness and/or uncertainty to be vaccinated was associated with younger age, female gender (in particular in the April 2021 survey), lower educational level and living with a child ≤12 years old. Among those with vaccine hesitancy, concerns about vaccine effectiveness declined over time (21.6% in November 2020 vs. 9.6% in May 2021, p = 0.014) and were reported more often by men; safety concerns remained stable over time (66.3% in November 2020 vs. 62.1% in May 2021, p = 0.658) and were reported more often by women. In conclusion, vaccination intention increased substantially over time. Tailored communication is needed to address vaccine hesitancy and concerns regarding vaccine safety.

SELECTION OF CITATIONS
SEARCH DETAIL